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Scalar electromagnetic propagation modelling using parabolic 
equations and the split-step Pad6 approximation 
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t D e d e n t  of Mathematical Sciences. Universitv of Massachusetts Lowell. Lowell. 
MA b1854, USA 
t Joint Command and Control Warfare Center, Kelly A€B, San Antonio TX 78243, USA 

Received 18 October 1994 

Abstract. This paper presents a solution of ZD electromagnetic wave propagation problems 
in complicated terrestrial domains. Scalar ZD parabolic approximations are derived from 
Maxwell's equations for both vertical and horizontal polarization. The parabolic equations 
are then solved using a new technique involving Pad6 rational function approximations of the 
macroscopic operator. This method allows for larger-than-normal range stepping, speeding up 
computational time significantly. The Pad6 approximation and the numerical implementation 
are fully discussed. The discontinuity at the earth's surface is handled directly by using 
classical continuity conditions and deriving exact interface conditions for linking the fields 
in the atmosphere to those in the terrain. The interface canditions areihen implemented using 
the concept of virmal points. Preliminary benchmark tests show the interface treatment to work 
well. Finally, several example N U S  are presented illustrating results. 

1. Introduction 

The solution of electromagnetic (EM) propagation problems in the terrestrial domain is a 
complicated matter. Three-dimensional (3D) variations in refraction and temain make the full 
vector problem extremely difficult to solve in reasonable time. If one chooses to simplify 
the problem by assuming symmetry in one or more of the coordinate directions, the vector 
problem can be uncoupled into two scalar problems 111. However, the solution of the 
two-dimensional (zD) scalar problem, is still very difficult for realistic environments. The 
parabolic approximation method is used to reduce the solution of the full two-way wave 
equation to a solution of a one-way equation [Z]. Benefits of one-way propagation are the 
simple numerical implementation of range dependencies in the medium, and the avoidance 
of prohibitive numerical aspects of solving elliptic equations associated with implementing 
two range-dependent boundary conditions. The model discussed in this paper is a so called 
2 . 5 ~  model using azimuthally varied vertical planar fields. Work is also proceeding on a 
3D model for higher frequencies using a hybrid combination of an underlying robust 3D ray 
trace and a 3D Gaussian beam model. 

Two of the most popular methods of solving the parabolic equations are the implicit 
finite difference (Im) method [3] and the split-step Fourier transform method [4,5]. These 
techniques are microscopic methods in the sense~that they are implementing approximations 
to the differential equation, defined microscopically. Limitations of these methods are that 
the grid mesh over which the solution is computed must be small to yield accuracy. This 
often means grid sizes on the scale of at most three wavelengths. At high frequencies and 
large propagation domains this could amount to grid sizes of hundreds of thousands by 
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millions of points needed for an accurate solution. Methods using fourth-order difference 
schemes have also been implemented to speed up computational time [6]. A better method 
to solve the equations is by symbolically integrating the equation with respect to range 
thereby obtaining the macroscopic propagator [7]. In theory if one does an ‘infinitely’ good 
job at approximating the macroscopic propagator it is possible to take ‘infinitely’ large range 
steps. Limitations in adequate range-dependent representation of the macroscopic operator, 
however, will limit actual range step sizes. In practice one still can achieve great savings 
in computational time over IFD and even possibly the split-step Fourier transform. 

The macroscopic operator is approximated using a Pad6 rational function series. The 
more terms used in the approximation, theoretically the larger the range-step one can take. 
Another advantage of this method is that once the Pad6 approximation for the propagator 
has been obtained computations may be applied in parallel. That is, each of the n Pad6 
approximations may be applied to the field at the same time as opposed to having to apply 
a series of products of operators sequentially. For cases when the desired result is the loss 
values only near the receiver, and not at many points in-between the source and receiver, 
the Pad6 technique applied to the macroscopic operator is ideal. It cuts down the number of 
intermediate range locations at which the field must be computed. It is reiterated, however, 
that the terrain elevation and cover wiU ultimately determine the range step size. 

This report summarizes the theory involved in deriving parabolic approximations to 
scalar EM propagation and the associated boundary modelling, including energy conservation 
at vertical interfaces. Also presented is the theory behind the Pad6 rational function 
approximation to the propagator, and the complete numerical implementation used in the 
code SSP. We first begin with the derivation of scalar wave equations for EM propagation. 

2. Derivation of scalar wave equations 

We begin with Maxwell’s equations [I] in spherical coordinates (I; 8, @), for terrestrial 
systems where r is the radial distance from the origin, 0 (measurd positive down,) is the 
angle between the z-axis and the radial direction and 6 is the azimuthal angle. Maintaining 
E planar in the (r, b) plane leads to a+H = a+e = 0 for vertical polarization and H planar 
in the (r, b) plane leads to a+E = a+& = 0 for horizontal polarization. The assumption 
of symmetry in the q5 direction is a necessary requirement to reduce the original vector 
problem to uncoupled scalar problems. 

These assumptions used in Maxwell’s equations readily lead to the two equations 

r2sin2e r2n2 ae 
n2 a _ _  

and 

--(rE+) 1 a2 + -- a ( s i n b 2 )  + (k;n2 - 
r ar2 +sin8 a0 E+ = O  ( l b )  

where n is the index of refraction defined as 
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Equation ( la)  determines the only non-zero component of H in the vertical polarization case. 
Components of E are determined in terms of fI. using Maxwell’s equations. Similarly, 
equation ( Ib )  determines the non-zero component of E in the horizontal polarization case. 
Components of H can then be determined in  terms of E+ using Maxwell’s equations. This 
last equation (IC) reflects the inclusion of conductivity via current density terms retained in 
Maxwell’s equations. 

One may transform equations (la) ind (Ib) into Helmholtz forms by using the 
substitutions 

In doing so, equation (1) yields 

where 

We use the subscript notation i V(i  = H )  to denote the vertical (horizontal) polarization. 
Since the computation of rectangular domains is more desirable than spherical domains, 

we now present an ‘earth-flattening’ approximation to our problem. We will use the smooth 
earth transformation 

x =reo and z =r,ln (i) (4a. b) 

where re is the radius of the earth at mean sea level (approximately 6370 km). This 
transformation places the smooth earth’s surface at z = 0. Terrain will be imposed later 
during the numerical implementation of the solution algorithm. The inverse transform is 
given by 

X 
r = r,exp (i) - and e = - .  

re 

In using the transformation defined in equation (4) differential operators translate as 

Equation .(3) thereby becomes 

where m is a modified index of refraction defined as 
~~ 
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and 
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cot(x/r,) am 32m-1 m am-I a2m-' 
rem ax ax2 re az a22 (74  

_ -  m---- -m- i = V  

i = H. 
6mj = 

The solution of equation (7a) using parabolic approximation techniques relies on 
segmenting the medium into a series of range independent sectors. It can be shown that in 
each of these sectors equation (7a) becomes 

where 

and the assumption of z/re < 1 is used. We have also neglected the rangedependent 
cosec2(*) term by assuming we are in the far field kor >> 1 and removed from any poles 
of the cosecant function (x  e me) [SI. Equation (8) is the desired starting equation for 
numerical implementation. We remark that modelling of media with finite conductivity is 
achieved by replacing m2 with the expression 

where c, and a,,, are modified light speed and conductivity defined as 

c, = cexp(-zjr,) and a,,, = a exp(Zz/r,). (gb, c) 

The next section will discuss the boundary modelling including the effects and 
correctiofis for discontinuities in range. 

3. Electromagnetic boundary modelling 

Since we are solving a parabolic equation with two z derivatives and one x derivative, we 
need two conditions in z and one condition inn at every range step. Computationally we will 
bound the domain by two horizontal planes at the top of the atmosphere and the bottom 
of the terrain. Homogeneous Dirichlet conditions will be used at these boundaries and 
techniques will be applied to reduce fictitious reflections. The fact that the terrain introduces 
a discontinuity in the problem, and its elevation is range dependent, complicates the 
problem slightly. Parabolic approximations assume that range-dependent environments are 
partitioned into range-independent sectors. The result is that terrain slopes are approximated 
by a series of step-like structures. This creates a vertical interface at each range step where 
the terrain elevation is altered significantly enough. Typically, the condition at vertical 
interfaces is continuity of field, however this is not the best condition one might impose. 
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We will eventually impose a conservation of energy condition at discontinuities in range to 
correct for some range-dependent errors. 

We first discuss the modelling of the horizontal interface between the atmosphere and the 
earth‘s surface. Assuming finite conductivity and no surface charge density the conditions 
on B, H ,  D and E ,  at an interfacebetween two different media ( E ~ ,  pa, q,) and ( E b ,  p b .  c,) 
are given in [ l ] .  In the case of a smooth interface, the normal vector e,, = e,. Assuming 
also that magnetic permeability in the terrain is that of the atmosphere (both equal to the 
free space value,) these conditions imply the following six relations hold 

H+- = f f+b He. = Hdb and Hra = Hrb. (W e,f 1 

For efficient numerical computation, the approach here treats the variable terrain as 
a series of discrete vertical jumps, i.e. a staircase approximation, using smooth earth 
formulae for the horizontal boundary conditions in each sector. However, the general 
boundary conditions for the variable terrain have been determined for vertical and horizontal 
polarization. The implementation of the general conditions is being examined. 

For the case of  vertical^ polarization, clearly one condition on H+ is given by 
equation (106). The second condition may be obtained by manipulating Maxwell’s equations 
and equation ( lob)  yielding 

i a  i a  
sa ar &b ar 
--(rH4a) = ---(Ti?&) 

at the terrain surface. A third condition is also given by aH+&W = aHmb/aB although 
this will not be used. For the case of horizontal polarization, equation (loa) will be 
one condition, and the second is obtained by manipulating Maxwell’s equations and 
equation (1Oe) giving 

at the terrain surface. The reason that the horizontal polarization case ‘does not see’ a 
discontinuity is because there is, in fact, no discontinuity in permeability at the surface. 

We next use the flattening transformation defined in equations (4), and equations ( 1 1 )  
and (12) to give 

and 

We now switch independent variables using equation (2). In the case of vertical 
polarization one derives from equation (104  

n a h  = nbUVb (144 
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while equation (13u) gives 
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Switching to modified refraction m, in using equation'(7b) these equations become 

m a w  = mbUVb ( W  

and 

For the case of horizontal polarization, use of equation (26) and equations (loa) and 
(12) gives 

(164 b) 
aUH, auHb 

U H ~ = U H ~  and - ag az . 

For efficient numerical computation, the approach taken here treats the variable terrain in 
terms of staircase approximations using-smooth earth formulae for the horizontal boundary 
conditions. The smooth earth boundary conditions are simplifications of the general 
boundary conditions €or variable terrain. These conditions can be determined without 
approximations to the terrain, for the cases of vertical and horizontal polarization, in terms 
of directions normal and parallel to the terrain. Using a generalization of the earth flattening 
transformation that is applicable to the variable terrain, the general conditions can also be 
given in earth flattened coordinates ( x ,  z). For brevity these formulae are not included. 

We now discuss the discontinuity at vertical interfaces, whether real (due to range 
dependent changes in refraction) or numerical (due to stair case approximations to terrain 
slopes.) Any parabolic equation requires two conditions in height and one condition in 
range to determine a unique solution. We have just derived the two height conditions at 
horizontal interfaces for each polarization case. When considering the condition at vertical 
interfaces, once an initial field has been specified, at each step in range the typical condition 
is continuity of field. That is to say that when a set of loss values  has^ been computed at 
a particular range step, these values are used as initial data for taking the next range step. 
This condition can be replaced by other possible more desirable conditions. We use results 
from scalar acoustic problems to derive a conservation of energy condition for the verticai 
interface [9-121. 

The basic concept is to introduce a new dependent variable obtained by scaling the 
old variable. The scale could be heightdependent. In order to properly implement an 
energy-conserving condition at a vertical interface we must derive an expression for the 
energy flux in the range direction. We begin with the complex Poynting vector S, which 
is generally taken to give the flow of energy in a propagating electromagnetic field. The 
vector is defined as [l] 

S = ~ E X H *  2 (17) 

where the asterisk denotes complex conjugate. The average intensity of energy flow is taken 
as the real part of the complex Poynting vector. For the case of vertical polarization 

S = $((&H$)e, - (E,H$)eo). (18 
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The energy flux in the 0 direction, denoted Se, is 

SO = -iRe(E,H;j. (1% 

Using Maxwell’s equations and equation (2) in equation (19) gives 

s* = 

In using equation (4) to switch to earth flattened coordinates the,energy flux is given by 

s, = - 

The condition for comervation of energy along a vertical interface thereby becomes 

where we use the subscript ‘in’ here to denote the incident wave while ‘a’ denotes the 
transmitted wave. 

This type of nonlinear boundary condition is quite difficult to implement in practice, 
however an equivalent linear condition can be derived. By factoring equation (Sa), and 
retaining the outgoing soIufion, one cm derive 

where 

Using equation (23) in equation (22) gives 

Im(iQv,Iuv,l2) = Im(iQvzol~v,n12) 

which will be satisfied if 

112 112 Qvu UV, = Qvsn .vin. 

One could in theory apply equation (24b) as the propagator for steps across vertical 
discontinuities.~ The simpler method of incorporating conservation conditions via a new 
dependent variable is derived by assuming negligible propagation angles. With this 
assumption, and those to follow, equations (86) and (236) yield the approximation Q1l2 e 
(K;/k,3’/4 % 2/;;; so that the condition becomes 

&UV” = &uv,. (25) 

where m is a modified index of refraction defined by equation (9). In deriving equation (E), 
one must assume that the terms involving z derivatives of m-] are negligible. We obtain here 
merely a first-order correction for conserving energy. If one desired, one could implement 
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the full correction, given in equation ~(24b) at each range step where there is a vertical 
discontinuity of some type. This compounds the numerical process, however, and slows 
down the algorithm significantly. It has been demonstrated that the first-order correction is 
sufficient for many types of environments when considering acoustic propagation [9]. Tests 
underway also tend to support this conclusion for electromagnetic problems as well. 

R I Brent and J F A  Ormsby 

Equation (25) suggests the transformation of dependent variable to be 

wv = 6 U V  (26) 

and continuity of field in w will imply a first-order correction for conservation of energy in 
U. The case of horizontal polarization is analysed in a similar fashion leading to analogous 
results and a transformation identical to equation (25). For brevity, these results are omitted. 

In using this transformation for conserving energy the elliptic equation that is solved is 
given as 

where this equation has been derived by substituting equation (26) into equation (8a). In 
implementing the energy-conserving transformation one must now transform the interface 
conditions given in equations (15) and (16). For the case of vertical polarization conditions 
on wv become 

&wva = &wvb ( 2 8 4  

and 

(28b) 

The conditions on WH for the case of horizontai polarization become 

1 1 
(294 - 

JZWH" = - $6" 
and 

The preceding derivation has assumed that the complex part of m is small compared to 
the real part. This is true over most of the frequency regime and terrain cover of interest. 

4. Numerical implementation 

Our goal is to solve the differential equation, equation (27), 
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subject to homogeneous Dirichlet conditions at the boundaries, and the interface conditions 
in equation (28) for vertical polarization or equation (29) for horizontal polarization. The 
modified wavenumber, K j ,  is defined in equation (8b). For convenience in upcoming 
notation, we drop the i subscript in favour of the reader understanding that all results 
apply to both the ver lbl  and horizontal polarization cases. This equation may be formally 
factored to give 

where 

as the differential equation governing the outwardly propagating wave. The differences 
between this formulation and that in equation (23) is numerically motivated and will be 
discussed shortly. Removing the exp(ik0x) from the solution U ,  equation (30a) becomes 

One may formally integrate equation (31) to give 

w(x + Ax, z )  = exp (&Ax ( - 1  + J?-+T)) w(x,, z). (32) 

Following the method of Collins we apply a Pad6 approximation [7]: 

where the coefficients qnp and bl,np are determined numerically using the approach in 1 1 1 1 .  
The method used in [ll] converges faster using the formulation in equation (30) than that 
in equation (23). The number np is the Pad6 number, or the number of terms used in the 
series approximation. 

Substituting equation (33) into equation (32) one obtains the split-step Pad6 solution, 

The terms in the sum may be computed in parallel, which is what makes this technique so 
appealing. That is we compute 

in parallel and then calculate 
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Let us discretize the problem as follows. Fit we will use a simple linear transformation 
to invert the problem so that z is measured positive down from the top of the atmosphere. 
For ease of notation we will still use the variable z rather than defining a new variable, say 
2‘. Then we define a grid with mesh sizes dx, and dz. Let 

wy = w(ndx ,  j d z )  ( 3 6 4  

and 

@ t j = @ A n k j d z )  (36b) 

When discretizing the differential operator Q, equation ( 3 5 4  becomes a tridiagonal 
linear system of which the j t h  equation is 

Rh,j@[j-1 + R21.j@(j + R31,j@(j+l = S11,jWy-i + S21,jwJ + S31.jwj”+l (37) 

where RI,  R2, R3, SI, S2, and S3, are dependent upon dz and medium properties through 
the function K and m. Once this system is solved for @tj one uses equation (35b) to 
compute the solution wy+’ as 

The numerical domain is terminated with homogeneous Dirichlet conditions on the 
field w .  To avoid spurious reflections from the top of the atmosphere, an absorbing layer 
is introduced with complex wavenumber. Similarly, at the bottom of the exth layer, one 
increases conductivity so as to eliminate reflections. For most typical ground cover with 
non-zero conductivity the Earth acts as an absorbing layer naturally. Increasing conductivity 
near the bottom of the domain insures no reflections. As for implementing the interface 
conditions as given In equations (28)’and (29) one uses the idea of virtual points [Ill.  
Assume the atmosphereterrain interface occurs between the j th  and ( j +  1)th notch points. 
We place two virtual points a’ and b’ in between the two actual points, such that the point 
a‘@’) represents the continuation of the atmospheric (terrain) solution one notch point. 

By requiring each @ ( j  to satisfy the 
linear interface conditions at the earth‘s surface, one automatically satisfies the interface 
requirement on the entire solution wj’. The discretized equations at the nodes on each side 
of the interface are 

This technique is described fully in [IO]. 

RIi,j@&-l + R21,j@[j +R31, j@& = - S l r , j ~ ~ - l  fS21, jwj” + S 3 1 , j ~ f ,  ( 3 9 4  

and 

R h , j + i @ ~ ~  +R21,j+1@(j+i + RS,j+l@tj+2 = S ~ I , ~ + I W $  + S ~ I , ~ + I W ; + ~  +S31,j+lw!+, 
(39b) 

We approximate 

(404 b )  Wn = f(w; + w$) W b  = z(wy+l I + W C )  
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at the interface, and substituting these expressions in equation (28) for vertical polarization 
or equation (29) for horizontal polarization allows one to solve for the virmal point solutions 
in terms of actual notch point solutions. For the case of vertical polarization, using 
equation (40) in equation (28) gives 

Al(wj” + w:,) = AZ(W~”+~ +Ut,) (410) 

and 

A3(wj” + W:,) f A 4 ( ~ 2  - Wj”) = A~(W:+~ + $) +.&(Wj”+[ - WE,) (41b) 

where 

A I = &  A 2 = &  ( 4 1 ~ 4  

Solving equations (41a) and (41b) for the virtual solutions gives 

w;, = a11 wj” + alzwj”+l 

WE, = a21 wj” + az~wj”+~ 

(42a) 

and 

(4%) 

where 

a11 = (AI(& - A6) + A z ( 4  -  AI& - As) + + -44)) (42~)  

a12 = (2AzAd/(Ai(Aa - AS) + + A4)) (424 

%I = C ~ A I A ~ ) / ( A I ( A ~  - As) + M A 3  + A4)) (424 

and 

a22 = (Ai(As + A6) - A d &  + A~)) / (AI(A~ - As) +&(A3 + A4)). (42f 1 

One may also repeat this procedure for each individual @cj, and since they each satisfy 
the same interface conditions one uses equation (42) exactly for virtual point solutions @[‘ 
and @&. The result is that at the interface equation (39) becomes 

Rli,j@!j-l + (R2i.j +a11R3i.j)@& + ~ I Z R ~ I , ~ @ ; ~ + I  

= SlI,jWj”-] f(S2i.j +allS3l,j)wj” +a12S3/.jw;+,. (430) 

and 
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A similar analysis in the horizontal polarization case yields very similar results in 
terms of equation (43). with differences in the definitions of the  CY:^ coefficients. Using 
equation (40) in equation (29) gives the equations 

Al(Wj” + w;) = A2(W;+I +WE,) 

and 

A3(wj” + w;) + A~(w:: - w;) = A4(wj”+] +WE,) +Az(wj”+l - w;) (44b) 

where now 

Solving equations (44a) and (446) for wi, and w;, yields 

and 

where 

and 

The 

(45c) 

(454 

implementation is exactly that in equation (43) v q j  being replace . Ei j .  

Therefore the numerical implementation of the terrain interface is a simple modification 
of the algorithm at the j th  and ( j  + I)th nodes. The code SSP is currently undergoing 
testing. The next section discusses preliminary testing and evaluation of SSP including the 
atmosphere-terrain interface implementation. 

5. Numerical examples 

The numerical code SSP is currently being tested. The results presented in this paper do not 
utilize the advantage of parallel processing. Preliminary solutions were calculated on PCs 
simply to test the code and demonstrate certain aspects of this method. The final program 
will be run on a parallel machine. References [8-101 suggest run time speeds 100 times 
faster than conventional methods. 



Scalar EM modelling using parabolic equations 2077 

Since the implementation of interface matching conditions is an integral part of the 
program, examination of the numerical methods used there is critical. While some acoustic 
propagation models do incorporate horizontal interfaces many more do not. It seems that 
the discontinuity in the acoustic case is slight as compared to the EM case. So slight as to 
permit one to smooth out discontinuities or simply ignore them altogether. This is certainly 
not the case for electromagnetic propagation. A series of tests, too comprehensive to present 
here, have examined this aspect of the problem. By altering acoustic parameters so as to 
have a discontinuity of order similar to the EM case, the results show that one must also 
incorporate the acoustic matching conditions to have accurate solutions. 

The simplest analytical model.to test the method is the Lloyds mirror problem, in which 
the nedium is taken as homogeneous, with homogeneous Dirichlet conditions at the top 
and bottom of the domain. The source frequency is taken as 4.99 MHz, with dr = 2 m, 
and dz = 0.5 m. The source and receiver height are both taken to be 75 m, and the entire 
thickness of the domain is 200 m. Figure I(a) shows a comparison of the propagation 
losses as computed by the program SSP (full curve) and the program EFEPE (dotted). The 
code EFEPE is the original acoustic code and was benchmarked against a normal mode 
program showing excellent agreement [7]. As one can see there is virtually no difference 
in solutions. ~ We were satisfied that the EM adaptation was coded correctly. We next 
considered the interface modelling. We are currently looking into benchmark models for 
EM propagation so as to fully test the numerical implementation of the interface matching 
conditions. However, there are existing acoustic benchmark models available immediately. 
We are able to implement acoustic boundary conditions, similar to our electromagnetic 
conditions, in the code and compare them to results that were benchmarked against normal 
mode solutions. The model we choose is called Case 3b from the NORDA Parabolic Equation 
Workshop [13]. It is basically one homogeneous medium overlying a different homogeneous 
medium with absorption. The density discontinuity at the ocean-sea floor interface is very 
similar to the light speed discontinuity in the EM problem at the atmospher+terrain interface. 
While the interface conditions for the acoustic model are not as complicated as the EM 
problem, the numerical implementation using victual points is identical. 

Having implemented the interface conditions in the acoustic code, figure l(b) compares 
the results from SSP (full) and the original acoustic program EFEPE (dotted,) which was 
benchmarked against a normal mode solution. The output from EFEPE was in excellent 
agreement with the normal mode solution except at null locations, specifically the one near 
7 km. While there are subtle differences in losses, they are at most 1 dB. and the curves 
generally agree quite well. Work is currently underway to test the EM interface conditions. 

The remaining figures demonstrate the method’s ability to greatly increase range step 
size. We will use the Lloyds mirror example to illustrate. Using the EFEPE result in 
figure I(a) as a benchmark we have calculated the solution using the code SSP with np = 4 
and dr = 50 m. Figure 2(a) shows thc results with fair agreement that decays as range 
increases. When increasing np to 8, as in figure 2(b), excellent accuracy is obtained. 
For parallel computations this could mean very little extra run time achieving much better 
accuracy. When the range step is increased to 100 m, as in figure 3(a), the accuracy is still 
maintained for np  = 8. When the range step is increased to 200 m, the accuracy begins 
to degrade. Finally, when increasing np to 10, shown in figure 4, accuracy, while still not 
perfect, is increased greatly. 

In theory, one can take very large range steps when using this method. One need only 
take np large enough so.that the Pad6 approximation gets arbitrarily accurate. However, the 
limiting factor will be terrain and atmospheric conditions. Taking range steps too large could 
result in ‘stepping over mountains’. As is typical with parabolic approximation methods, 



2078 R I Brent and I F A  Ormsby 

Lloyds Mirror Test Case Lloyds Mirror Test Case 
t=4.99 MHz dr=?m, 6z=.51), npr4 fz4.99 MHI dz=.5m 

-10 -10 

40 .2Q 
h -30 m .30 

-40 v -40 
U 

-50 2 -50 

bo 3 -10 

-70 .70 

.BO -ea ,, ., . ,,  .., , 
0 , ? 3 0 I 2 3 

Range (km) Range (km) 

Acoustic Test Case Lloyds Mirror Test Case 
(Benchmark Problem 3b. Ret. 161 fi4.99 MHz dr=.56 

Figure 1. (a) The Lloyds mirror test problem. Source 
and receiver height are 75 m, and source frequency is 
4.99 MHz. Intensity loss in dB is plotted against range 
in km. SSP (full CUNe) and E ~ P E  (dotted curve) show 
excellent agreement. (b) Acoustic benchmsk Case 3b 
in [13]: SSP (full curve) and EFEPE (dotted curve) show 
excellent agreement. 

Fiwre 2. Lloyds mirror test problem: comparison 
of SSP with benchmark solution for (a) np = 4 and 
dr = 50 m. and (b) np = % and dr = 50 m. 

the range-dependent problem is sectored into range-independent slabs. Discretization of 
a continuous medium results in staircase effects. These effects are minimized by taking 
smaller range steps. Therefore there is still a lot of work to be done in the delicate matter 
of trading off time (dr and np as large as possible) and accuracy (dr small enough to 
capture the true physical properties of the medium). Sensitivity testing and benchmarking 
are crucial aspects of this problem and current efforts are being placed on these areas. 

6. Summary 

Scalar Helmholtz equations have been derived directly from Maxwell's equations for 
the cases of vertical and horizontal polarization. The p r i m  assumption necessary for 
such a reduction is that the medium is approximately symmetric in one spatial direction. 
Factorization of these equations yield parabolic equations which are then symbolically 
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Lloyds Mirror Test Case 
l i i . 9 9  hrm; ' i r= .5n,  

. 

Lloyds Mirror Test Case 
f=4.99 MHz dr=.5m 

Lloyds Mirror Test. Case 

Figure 3. Lloyds mirror test problem: comparison Figure 4. Lloyds minor test problem: comparison 
of SSP with benchmark solution for (a) np = 8 and of SSP with benchmark solution for np = 10 and 
dr = 100 m, and (b) np = 8, and dr = 200 m. dr = 200 m. 

solved in the range  direction.^ What one obtains is a symbolic expression for the range- 
stepping macroscopic operator. Rather than discretize the microscopic operator, a Pad6 
series approximation is used for the macroscopic operator. In theory this allows very large 
range steps. Step size is still ultimately determined by medium characteristics. However 
there are numerical advantages over typical finite difference methods, the main being the 
suitability of the method to be parallelized for multi-processor computers. 

Interface conditions have been fully developed for linking the atmosphere to the 
ground. Methods for conserving energy at vertical interfaces has also been discussed, 
with the result that to first order, a simple transformation of dependent variable allows 
for implementation. This will provide corrections to sloping terrain errors as well as 
range-dependent refractive effects. The numerical implementation of the split-step Pad6 
solution and interface conditions has also been presented. Several benchmark calculations 
and interface modelling comparisons were also presented. A full description of the code 
SSP is contained in technical reports available from the authors upon request. The user's 
manual includes program flow charts, input descriptions and output options. Also described 
in this report is a post processing graphics program called GRAPH. This program produces 
contour graphs for visual display only. 
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